
Writing Bcfg2 Specification1.
Metadata Configuration

Usage of Groups in Metadata1.
Metadata/clients.xml

Clients Tag1.
Client Tag2.

2.

Metadata/groups.xml
Metadata Groups Tag1.
Metadata Group Tag2.

3.

Use of XInclude4.
Probes5.
Dynamic Groups6.

2.

Abstract Configuration (Structures)
Usage of Groups in Base and Bundles1.
Configuration Entity Types

Configuration Entity Name Attribute1.
2.

Writing Bundles
Bundle Tag1.
Abstract Group Tag2.
Using Base3.
Base Tag4.
Abstract Group Tag5.

3.

4.

3.

Literal Configuration (Generators)
Usage of Groups in Generators1.
Generators2.

4.

Writing Bcfg2 Specification
Bcfg2 specifications are logically divided in to three areas:

Metadata•
Abstract•
Literal•

The metadata portion of the configuration assigns a client to its profile group and to its non profle groups. The profile
group is assigned in Metadata/clients.xml and the non profile group assignments are in Metadata/groups.xml.

The group memberships contained in the metadata are then used to constuct an abstract configuration for the client. An
abstract configuration for a client identifies the configuration entities (packages, configuration files, service, etc) that a
client requires, but it does not identify them explicitly. For instance an abstract configuration may identify that a client
needs the bcfg2 package with

<Package name=bcfg2/>

but this does not explicitly identify that an RPM package version 0.9.2 should be loaded from
http://rpm.repo.server/bcfg2-0.9.2-0.1.rpm. The abstract configuration is defined in the xml configuration files for the
Base and Bundles plugins.

Writing Bcfg2 Specification 1

A combination of a clients metadata (group memberships) and abstract configuration is then used to generate the clients
literal configuration. For instance the above abstract configuration entry may generate a literal configuration of

<Package name='bcfg2' version='0.9.2-0.1' type='yum'/>

A clients literal configuration is generated by a number of plugins that handle the different configuration entities.

Writing Bcfg2 Specification 2

Metadata Configuration
Metadata is a bcfg2 Plugin that provides system metadata support. The metadata mechanism has two types of
information, client metadata and group metadata.

The client metadata describes which top level group a client is associated with.

The group metadata describes groups in terms of what bundles and other groups they include.

Usage of Groups in Metadata

Clients are assigned membership of groups in the Metadata descriptions. Clients can be directly assigned to 'profile' or
'public' groups. Client membership of all other groups is by those groups being associated with the profile or public
groups.

Clients are associated with profile groups in Metadata/clients.xml as shown below.

Clients are associated with public groups by use of the bcfg2 client '-p' option.

Metadata/clients.xml

The Metadata/clients.xml file contains the mappings of Profile Groups to clients. The file is just a series of <Client />
tags, each of which describe one host. A sample file is below:

<Clients version="3.0">
 <Client profile="backup-server" pingable="Y" pingtime="0" name="backup.example.com"/>
 <Client profile="console-server" pingable="Y" pingtime="0" name="con.example.com"/>
 <Client profile="kerberos-master" pingable="Y" pingtime="0" name="kdc.example.com"/>
 <Client profile="mail-server" pingable="Y" pingtime="0" name="mail.example.com"/>
 <Client name='foo' address='10.0.0.1' pingable='N' pingtime='-1'>
 <Alias name='foo-mgmt' address='10.1.0.1'/>
 </Client>
</Clients>

Clients Tag

The Clients tag has the following possible attributes:

Name Description Values
version Client schema version String

Client Tag

The Client tag has the following possible attributes:

Name Description Values

name Host name of client. This needs do be the name (possibly a FQDN) returned by a reverse
lookup on the connecting IP address. String

profile Profile group name to associate this client with String

Metadata Configuration 3

pingable If the client is pingable (deprecated; for old reporting system) (Y|N)
uuid Establishes a per-node name that can be used to bypass dns-based client resolution String
password Establishes a per-node password that can be used instead of the global password String
location Requires requests to come from an IP address that matches the client record (fixed|floating)
secure Requires the use of the per-client password for this client (true|false)
pingtime Last time the client was pingable (deprecated; for old reporting system) String
address IP address of the client. Short-circuits hostname dns resolution String
Alias Alternative name and address for the client XML Element
For detailed information on client authentication see Authentication

Metadata/groups.xml

The Metadata/groups.xml file contains Group and Profile definitions. Here's a simple Metadata/groups.xml file:

<Groups version='3.0'>
 <Group name='mail-server' profile='true'
 public='false'
 comment='Top level mail server group' >
 <Bundle name='mail-server'/>
 <Bundle name='mailman-server'/>
 <Group name='apache-server'/>
 <Group name='rhel-as-4-x86'/>
 <Group name='nfs-client'/>
 <Group name='server'/>
 </Group>
 <Group name='rhel-as-4-x86' toolset='rh'>
 <Group name='rhel'/>
 </Group>
 <Group name='apache-server'/>
 <Group name='nfs-client'/>
 <Group name='server'/>
 <Group name='rhel'/>
</Groups>

Nested/chained groups definitions are conjunctive (logical and). For instance, in the above example, a client associated
with the Profile Group 'mail-server' is also a member of the apache-server, rhel-as-4-x86, nfs-client, server and rhel
groups.

Metadata Groups Tag

The Groups tag has the following possible attributes:

Name Description Values
version Group schema version String
origin URL of master version (for common repo) String
revision Master version control revision String

Client Tag 4

Metadata Group Tag

The Group Tag has the following possible attributes:

Name Description Values
name Name of the group String
profile If a client can be directly associated with this group (True|False*)

public If a client can freely associate itself with this group. For use with bcfg2
-p option on the client. (True|False*)

toolset Describes which client-side logic should be used to make configuration
changes (rh|debian|solaris|aix|auto|gentoo)

category
A group can only contain one instance of a group in any category. This
provides the basis for representing groups which are conjugates of one
another in a rigorous way. It also provides the basis for negation.

String

default Set as the profile to use for clients that are not associated with a profile
in clients.xml. (True|False*)

comment English text description of group String

Use of XInclude

XInclude is a W3C specification for the inclusion of external XML documents into XML source files. Much like the
use of #include in C, this allows complex definitions to be split into smaller, more manageable pieces. As of
bcfg2-0.9.0pre1, the Metadata plugin supports the use of XInclude specifications to split the clients.xml and groups.xml
files. This mechanism allows the following specification to produce useful results:

<Groups version='3.0' xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include href="my-groups.xml" />
 <xi:include href="their-groups.xml" />
</Groups>

Each of the included groups files has the same format. These files are properly validated by bcfg2-repo-validate. This
mechanism is useful for composing group definitions from multiple sources, or setting different permissions in an svn
repository.

Probes

Probes are implemented as a part of the metadata plugin, but are complex enough to deserve their own page. More
information is here

Dynamic Groups

Dynamic groups are likewise complex, and are covered on their own page

Abstract Configuration (Structures)
A clients Abstract Configuration is the inventory of configuration entities that should be installed on a client. Two
plugins provide the basis for the abstract configuration, the Bundler and Base.

Abstract Configuration (Structures) 5

http://www.w3.org/TR/xinclude/

The plugin Bundler builds descriptions of interrelated configuration entities. These are typically used for the
representation of services, or other complex groups of entities.

The Base provides a laundry list of configuration entities that need to be installed on hosts. These entities are
independent from one another, and can be installed individually without worrying about the impact on other entities.

Usage of Groups in Base and Bundles

Groups are used by the Base and Bundles plugins for selecting Configuration Entity Types for inclusion in a clients
abstract configuration. They can be thought of as:

if client is a member of group1 then
 assign to abstract config

Nested groups are conjunctive (logical and).

if client is a member of group1 and group2 then
 assign to abstract config

Group membership maybe negated. See "Writing Bundles" for an example.

Configuration Entity Types

Entities in the abstract configuration (and correspondingly in the literal configuration) can have one of several types. In
the abstract configuration, each of these entities only has a tag and the name attribute set.

The types of Configuration Entities that maybe assigned to the abstract configuration are as follows:

Tag Description
Package Software Package
ConfigFile Configuration File
Service Persistent system services and daemons
Directory File system Directories
SymLink Symbolic links
Permissions The permissions (not contents) of a POSIX path
Action Actions to be performed as part of a bundle installation
An example of each entity type is below.

<Package name='bcfg2'/>
<ConfigFile name='/etc/bcfg2.conf'/>
<Service name='ntpd'/>
<Directory name='/var/tmp'/>
<SymLink name='/dev/MAKEDEV'/>
<Permissions name='/etc/passwd'/>
<Action name='action_name'/>

Usage of Groups in Base and Bundles 6

Configuration Entity Name Attribute

With the exception of the Action Entity type, the value of the configuration entity name attribute is not arbitary. It must
map to entities of the same type in the Literal Configuration, which in turn map to physical entities on the client.

For the most part the physical entity being mapped to is intuitive and are listed below.

Tag Description
Package name of the software package
ConfigFile Full absolute path of the configuration file

Service Name of the init script for the service which may not be that same as the name of the daemon started or
the package name

Directory Full absolute path of the directories
SymLink Full absolute path of the symbolic linkss
Permissions Full absolute path of the file or directory
Action Arbitary name

Writing Bundles

Bundles consist of a set of configuration entities. These entities are grouped together due to a configuration-time
interdependency. Basic services tend to be the simplest example of these. They normally consist of

some software package(s)•
some configuration files•
an indication that some service should be activated•

If any of these pieces are installed or updated, all should be rechecked and any associated services should be restarted.

All files in the Bundles/ subdirectory of the repository are processed. Each bundle must be defined in its own file and
the filename must be the same as the bundle name with a .xml suffix.

ls Bundler
Glide3.xml
LPRng.xml
Tivoli-backup.xml
Tivoli.xml
a2ps.xml
abiword.xml
account.xml
adsm-client.xml
amihappy.xml
apache-basic.xml
apache.xml
apache2-basic.xml
apt-proxy.xml
at.xml
atftp-server.xml
atftp.xml
....

Groups can be used inside of bundles to differentiate which entries particular clients will receive. This is useful for the

Configuration Entity Name Attribute 7

case where entries are named differently across systems; for example, one linux distro may have a package called
openssh while another uses the name ssh. Configuration entries nested inside of Group elements only apply to clients
who are a member of those groups; multiply nested groups must all apply.

Also, groups may be negated; entries included in such groups will only apply to clients who are not a member of said
group.

When packages in a bundle are verified by the client toolset, the ConfigFiles included in the same bundle are taken into
consideration. That is, a package will not fail verification from a bcfg2 perspective if the package verification only
failed because of configuration files that are defined in the same bundle.

The following is an annotated copy of a bundle:

<Bundle revision='$Revision: 2668 $' name='ssh' version='2.0'
 origin='https://svn.mcs.anl.gov/repos/bcfg/trunk/repository/Bundler/ssh.xml'>
 <ConfigFile name='/etc/ssh/ssh_host_dsa_key'/>
 <ConfigFile name='/etc/ssh/ssh_host_rsa_key'/>
 <ConfigFile name='/etc/ssh/ssh_host_dsa_key.pub'/>
 <ConfigFile name='/etc/ssh/ssh_host_rsa_key.pub'/>
 <ConfigFile name='/etc/ssh/ssh_host_key'/>
 <ConfigFile name='/etc/ssh/ssh_host_key.pub'/>
 <ConfigFile name='/etc/ssh/sshd_config'/>
 <ConfigFile name='/etc/ssh/ssh_config'/>
 <ConfigFile name='/etc/ssh/ssh_known_hosts'/>
 <Group name='rpm'>
 <Package name='openssh'/>
 <Package name='openssh-askpass'/>
 <Service name='sshd'/>
 <Group name='fedora' >
 <Group name='fc4' negate='true'>
 <Package name='openssh-clients'/>
 </Group>
 <Package name='openssh-server'/>
 </Group>
 </Group>
 <Group name='deb'>
 <Package name='ssh'/>
 <Service name='ssh'/>
 </Group>
</Bundle>

In this bundle, most of the entries are common to all systems. Clients in group "deb" get one extra package and service,
while clients in group "rpm" get two extra packages and an extra service. In addition, clients in group "fedora" and
group "rpm" get one extra package entries, unless they are not in the fc4 group, in which case, they get an extra
package. Notice that this file doesn't describe which versions of these entries that clients should get, only that they
should get them. (Admittedly, this example is slightly contrived, but demonstrates how group entries can be used in
bundles)

Group Entry
all /etc/ssh/ssh_host_dsa_key
all /etc/ssh/ssh_host_rsa_key
all /etc/ssh/ssh_host_dsa_key.pub
all /etc/ssh/ssh_host_rsa_key.pub

Writing Bundles 8

all /etc/ssh/ssh_host_key
all /etc/ssh/ssh_host_key.pub
all /etc/ssh/sshd_config
all /etc/ssh/ssh_config
all /etc/ssh/ssh_known_hosts
rpm Package openssh
rpm Package openssh-askpass
rpm Service sshd
rpm and fedora Package openssh-server
rpm and fedora and not fc4 Package openssh-clients
deb Package ssh
deb Service ssh

Bundle Tag

The Bundle Tag has the following possible attributes:

Name Description Values
name The name of the bundle String
version Bundle schema version String
origin URL of master version (for common repo) String
revision Master version control revision String
As mentioned above the Configuration Entity Tags may only have the name attribute in Bundle definitions.

Abstract Group Tag

In the Abstract Configuration plugins (Base and Bundle) the Group Tag may have the following attributes:

Name Description Values
name Name of group. String
negate Negate the group association (is not a member of) (True|False*)
An abstract group may contain any of the Configuration Entity types and other groups.

Using Base

The Base plugin provides a mechanism to add independent configuration entities to a client's abstract configuration. All
files in the Base/ subdirectory of the repository are processed, and all entries that fall within the scope of the client
metadata are included in its abstract configuration.

$ ls Base/
centos-4-x86.xml
fedora-core-4-x86.xml
rhel-as-4-x86.xml
rhel-es-4-x86.xml
rhel-ws-4-x86_64.xml
rhel-ws-4-x86.xml

Bundle Tag 9

<Base>
 <Group name='Centos4.4-Standard'>
 <Package name='audit'/>
 <Package name='audit-libs'/>
 <Package name='basesystem'/>
 <Package name='bash'/>
 <Package name='bcfg2'/>
 <Package name='beecrypt'/>

 <Package name='yum'/>
 <Package name='zlib'/>
 <Group name='x86_64'>
 <Package name='systemimager-x86_64initrd_template'/>
 </Group>
 </Group>
</Base>

The format of the Base files are similar to those used by the Bundler. The majority of the elements are usually
Packages, but ConfigFiles, Directories, Services, Permissions, and SymLinks may all be defined. A partial example is
below:

Base Tag

The Base Tag has no attributes

As mentioned above the Configuration Entity Tags contained in a Base definition may only have the name attribute in
Base definitions.

Abstract Group Tag

In the Abstract Configuration plugins (Base and Bundle) the Group Tag may have the following attributes:

Name Description Values
name Name of group. String
negate Negate the group association (is not a member of) (True|False*)
An abstract group may contain any of the Configuration Entity types and other groups.

Literal Configuration (Generators)
A Generator is a bcfg2 piece of code that is run to generate the literal configuration for a host using a combination of
the hosts metadata and abstract configuration.

A Generator can take care of a particular configuration element. Any time this element is requested by the client, the
server dynamically generates it either by crunching data and creating new information or by reading a file off of disk
and passes it down to the client for installation.

Usage of Groups in Generators

Similar to Abstract Configuration plugins, groups are used by generator plugins for selecting Configuration Entities for
inclusion in a clients literal configuration. They can be thought of as:

Literal Configuration (Generators) 10

if client is a member of group1 then
 assign to abstract config

Nested groups are conjunctive (logical and).

if client is a member of group1 and group2 then
 assign to abstract config

How the groups are configured is specific to the plugin, but here are two common methods:

xml configuration file (Pkgmgr, Rules)•
file name encoding (Cfg, TCheetah, SSHBase)•

Details are included on each plugin's page.

Generators

Each of the generators is covered on their own page.

Plugin Description

Actions Action entries are commands that are executed either before bundle installation, after bundle installation or
both.

Cfg The Cfg plugin provides a repository to describe configuration file contents for clients. In its simplest form,
the Cfg repository is just a directory tree modeled off of the directory tree on your client machines.

Deps The deps plugin allows inter-entry dependencies (like package prerequisites) to be mapped independent of
client roles.

Hostbase Hostbase is an IP management system built on top of Bcfg2.

Pkgmgr The Pkgmgr plugin define what packages are available for a host or image and where to find those
packages.

Rules The Rules plugin is responsible for defining the details about the Directory, Permissions, SymLink and
Service elements.

SSHbase
SSHbase is a purpose build bcfg2 plugin for managing ssh host keys. It is responsible for making ssh keys
persist beyond a client rebuild and building a proper ssh_known_hosts file, including a correct localhost
record for the current system.

TCheetah
The TCheetah plugin allows you to use the cheetah templating system to create files, instead of the various
diff-based methods offered by the Cfg plugin. It also allows you to include the results of probes executed
on the client in the created files.

TGenshi The TGenshi plugin uses the genshi toolkit for generating files and functions much like the TCheetah
plugin

Usage of Groups in Generators 11

http://www.cheetahtemplate.org/
http://genshi.edgewall.org/

	tmpe6roWGtracpdf

